
LECTURE 1

YIHANG ZHU

1. Review of Galois Theory and separability

Let K be a �eld. An irreducible non-constant polynomial f(X) ∈ K[X] is called
separable if all of its roots in an algebraic closure of K are distinct. Equivalently,
f ′(X) 6= 0 as a polynomial. We see that f ′(X) = 0 only when the characteristic of
K is positive, say p, and f(X) is of the form∑

anX
pn.

De�nition 1.1. Let L/K be an algebraic extension. An element α ∈ L − K is
called separable if its minimal polynomial is separable. The extension L/K is said
to be separable if any α ∈ L−K is separable.

Example 1.2. Consider the �eld Fp(t) where t is an indeterminate. It has a �nite

extension Fp[ p
√
t] := Fp(t)[α]/(αp − t). This extension is inseparable since the

minimal polynomial of α = p
√
t is Xp − t = (X − α)p is irreducible over Fp(t)

(exercise).

In a sense this example is the only possibility for a �eld extension to be insepa-
rable. To be more precise, we call a �eld K perfect if any algebraic extension of K
is separable. We have

Proposition 1.3. If charK = 0, then K is perfect. If charK = p > 0, then K is
perfect if and only if Kp = K.

Proof. It follows from the following observation: Any polynomial f(X) over K is
of the form g(Xpn

) for some n ≥ 0 and g a separable polynomial over K. �

Example 1.4. Any �nite �eld is perfect.

In classical number theory, the �elds we consider are usually either of charac-
teristic zero or �nite �elds, so the issue of separability will not occur. However, as
we will see in the later stage of the course, it is important to study �elds like Fp(t)
which are not perfect. They occur as the �eld of rational functions on an algebraic
curve over a �nite �eld.

Recall the following de�nition.

De�nition 1.5. Let L/K be an algebraic extension. It is called normal if for any
α ∈ L−K, the minimal polynomial of α splits in L. It is called Galois if K is equal
to the �xed �eld of Aut(L/K). In this case, we denote Gal(L/K) = Aut(L/K).

Recall: The splitting �eld of any polynomial over K is normal over K. A �nite
extension L/K is Galois if and only if [L : K] = |Gal(L/K)|. (In general ≥).

Proposition 1.6. Let L/K be an algebraic extension. TFAE
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(1) It is Galois.
(2) It is normal and separable.
(3) L is the splitting �eld of a set of separable polynomials over K.

Theorem 1.7 (Main Theorem of Galois Theory). Let L/K be a �nite (resp. alge-
braic) extension. The maps H 7→ LH , F 7→ Gal(L/F ) give an inclusion reversing
bijection between (resp. closed) subgroups of H ⊂ Gal(L/K) and sub-extensions
F/K. Moreover, F/K is Galois if and only if Gal(L/F ) is normal in Gal(L/K),
in which case we have Gal(F/K) ∼= Gal(L/K)/Gal(L/F ).

We can understand the structure of an inseparable extension L/K quite well. We
can always �nd a sub-extension S/K which is separable, such that L/S is purely
inseparable.

De�nition 1.8. Let L/K be an algebraic extension. An element α ∈ L − K is
called purely inseparable if its minimal polynomial has only one distinct root, i.e.
of the form (X − α)n. The extension L/K is said to be purely inseparable if any
α ∈ L−K is purely inseparable.

Lemma 1.9. Let K be a �eld of characteristic p > 0. If α is an algebraic element
over K, then α is purely inseparable if and only if αpn ∈ K for some n ≥ 0. When
this happens the minimal polynomial of α is (X−α)p

n

for the smallest n. Let L/K
be a purely inseparable extension. Then L/K is normal and Gal(L/K) = 1. When
L/K is �nite its degree is a p power.

Proposition 1.10. Let L/K be an algebraic extension. De�ne

S = {α ∈ L separable /K}

I = {α ∈ L purely inseparable /K} .
Then S and I are �elds, calleds the separable/ purely inseparable closures of K in
L. The extension S/K is separable, and L/S, I/K are purely inseparable.

When L/K is �nite, let S be the separable closure of K in S. We de�ne the
separable degree to be [L : K]s := [S : K] and the inseparable degree to be
[L : K]i := [L : S]. Thus [L : K]s[L : K]i = [L : K] and [L : K]i is a p power.

Corollary 1.11. If L/K is a �nite extension whose degree is prime to p = charK,
then it is separable.

These concepts will be useful when we study algebraic curves over characteristic
p �elds.

2. Review of finite fields

Recall that if a �eld F is �nite, then |F| = pf for some f ≥ 1 where p = charF.
For any p power q, there is essentially only one �nite �eld of q elements, denoted
by Fq, which is the splitting �eld of Xq −X over Fp := Z/pZ. Any �nite extension
of Fq is of the form Fqn/Fq. It is normal, hence Galois, and

Gal(Fqn/Fq) ∼= Z/nZ,

where a generator is given by the q-Frobenius

Frobq = Frobf
p : α 7→ αq.
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In a slightly fancier language, the absolute Galois group of Fq is isomorphic to the
pro�nite completion of Z, where a topological generator is given by Frobq.

When we study number theory problems, usually the �rst attack is to try to
solve the problem modulo p. This is how �nite �elds arise. We have seen that the
absolute Galois group of a �nite �eld is very easy to understand. When we try to
understand Gal(Qab/Q), in some sense we would like to understand it in terms of
the Frobenii Frobp for all the prime numbers p. This point will be made clearer
when we talk about class �eld theory. Anyhow there is a deep and miraculous
relation between the Frobp for di�erent p's, called the Artin reciprocity law, which
makes number theory more beautiful than general abstract algebra. An incarnation
of the Artin reciprocity is the famous quadratic reciprocity. We brie�y recall it.

Recall that F×p (resp. F×q )is a cyclic group of order p − 1 (resp. q − 1). For
a ∈ Fp, de�ne

(
a

p
) =


0, a = 0

1, a ∈ (F×p )2

−1, otherwise.

The map a 7→ (a
p ) = a

p−1
2 is a group homomorphism F×p → {±1}.

Theorem 2.1. Let p, l be odd primes. Then (p
l ) = (−1)

(p−1)(l−1)
2 ( l

p ). Moreover

(−1p ) = (−1)
p−1
2 , ( 2

p ) = (−1)
p2−1

8 .

As Professor Kato once put it, ( l
p ) is about the girl in the boy's eyes, and (p

l ) is

about the boy in the girl's eyes, and in real life they are not related to each other,
while in number theory they are!

Proof. The assertion for (−1p ) is trivial. The case ( 2
p ) is left as an exercise. We

prove the assertion for l, p odd. Let p∗ := (−1)
p−1
2 p. Then

(
p∗

l
) = (

−1

l
)

p−1
2 (

p

l
) = (−1)

(p−1)(l−1)
2 (

l

p
).

We need to prove

(
l

p
) = (

p∗

l
).

Observe (p∗

l ) = 1 if and only if
√
p∗ ∈ Fl. We try to construct

√
p∗ ∈ F̄l using the

Gauss sum. Let ζ ∈ F̄l be a primitive p-th root of unity. It is well known that a
candidate for

√
p∗ is

ψ :=

p−1∑
n=0

(
n

p
)ζn.

In fact, we compute

ψ2 =

p−1∑
n,k=0

(
nk

p
)ζn+k =

p−1∑
n,k=0

(
(n− k)k

p
)ζn =

p−1∑
n=0

n−1∑
k=1

(
n/k − 1

p
)ζn.

For each n, we have

p−1∑
k=1

(
n/k − 1

p
) =

{∑p−2
k=0(k

p ) = −(p−1
p ) = (−1)

p−1
2 +1, n 6= 0∑p−1

k=1(−1p ) = (−1)
p−1
2 (p− 1), n = 0

.
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So

ψ2 = (−1)
p−1
2 (p− 1−

p−1∑
n=1

ζn) = p∗.

Next, ψ ∈ Fl if and only if it is �xed by the Frobenius, i.e.

ψl = ψ.

We compute

ψl =

p−1∑
n=0

(
n

p
)ζnl =

p−1∑
n=0

(
nl−1

p
)ζn = (

l

p
)ψ.

Hence

(
l

p
) = 1⇔ ψ ∈ Fl ⇔ (

p∗

l
) = 1.

�

Exercise 2.2. For p an odd prime, let ζ ∈ F̄p be a primitive 8-th root of unity. Show

that ζ + ζ−1 represents
√

2. Use this to prove ( 2
p ) = (−1)

p2−1
8 .

Remark 2.3. The above calculation actually shows that for any �eld K whose

characteristic is not p, we have K(
√
p∗) ⊂ K(ζp), where p∗ = (−1)

p−1
2 p.

3. Sum of two squares

Quadratic �elds arise when studying quadratic Diophantine equations.

Question 3.1. Let p be a prime. When is p of the form x2 + y2 with x, y ∈ Z?

If p = 2 the answer is yes. If p ≡ 3 mod 4, then no. We need to prove p ≡ 1
mod 4⇒ p = x2 + y2. The equation can be rewritten as

p = (x+ iy)(x− iy), i =
√
−1.

The idea is that �nding a solution (x, y) ∈ Z2 is the same as �nding a number
z = x+ iy ∈ Z[i] such that p = zz̄. We use the following basic fact.

Fact 3.2. The ring of Gaussian integers Z[i] is a UFD.

We go on to determine the units and prime elements of Z[i]. De�ne the norm
map

N : Z[i]→ Z, z 7→ zz̄.

It is multiplicative and Nz = Nz̄. An element u ∈ Z[i] is a unit if and only if
Nu = 1, so the group of units is {±1,±i} . We factorize an odd rational prime p
inside Z[i]:

p =
∏

peii .

Then p2 = Np =
∏
N(pi)

ei Which shows the factorization can only be one of the
two forms

p = p or p = pp̄.
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